Rainbow: an integrated tool for efficient clustering and assembling RAD-seq reads

نویسندگان

  • Zechen Chong
  • Jue Ruan
  • Chung-I Wu
چکیده

MOTIVATION The innovation of restriction-site associated DNA sequencing (RAD-seq) method takes full advantage of next-generation sequencing technology. By clustering paired-end short reads into groups with their own unique tags, RAD-seq assembly problem is divided into subproblems. Fast and accurately clustering and assembling millions of RAD-seq reads with sequencing errors, different levels of heterozygosity and repetitive sequences is a challenging question. RESULTS Rainbow is developed to provide an ultra-fast and memory-efficient solution to clustering and assembling short reads produced by RAD-seq. First, Rainbow clusters reads using a spaced seed method. Then, Rainbow implements a heterozygote calling like strategy to divide potential groups into haplotypes in a top-down manner. And along a guided tree, it iteratively merges sibling leaves in a bottom-up manner if they are similar enough. Here, the similarity is defined by comparing the 2nd reads of a RAD segment. This approach tries to collapse heterozygote while discriminate repetitive sequences. At last, Rainbow uses a greedy algorithm to locally assemble merged reads into contigs. Rainbow not only outputs the optimal but also suboptimal assembly results. Based on simulation and a real guppy RAD-seq data, we show that Rainbow is more competent than the other tools in dealing with RAD-seq data. AVAILABILITY Source code in C, Rainbow is freely available at http://sourceforge.net/projects/bio-rainbow/files/

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An optimized approach for local de novo assembly of overlapping paired-end RAD reads from multiple individuals

Restriction site-associated DNA (RAD) sequencing is revolutionizing studies in ecological, evolutionary and conservation genomics. However, the assembly of paired-end RAD reads with random-sheared ends is still challenging, especially for non-model species with high genetic variance. Here, we present an efficient optimized approach with a pipeline software, RADassembler, which makes full use of...

متن کامل

RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes

MOTIVATION The alignment of sequencing reads to a transcriptome is a common and important step in many RNA-seq analysis tasks. When aligning RNA-seq reads directly to a transcriptome (as is common in the de novo setting or when a trusted reference annotation is available), care must be taken to report the potentially large number of multi-mapping locations per read. This can pose a substantial ...

متن کامل

Statistics for Next Generation Sequencing – Meeting Report

AnAlysis of RnA-seq dAtA Profiling the transcriptome has been a central application of NGS technologies. Since the sequencing technology generates short reads, the first step is to map the reads onto the source genome, genes, and transcripts. Despite development of many algorithms and tools for mapping reads to the reference genomes, accurately mapping RNA-seq reads remains a tough problem due ...

متن کامل

Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization

INFERRING PHYLOGENETIC RELATIONSHIPS BETWEEN CLOSELY RELATED TAXA CAN BE HINDERED BY THREE FACTORS: (1) the lack of informative molecular variation at short evolutionary timescale; (2) the lack of established markers in poorly studied taxa; and (3) the potential phylogenetic conflicts among different genomic regions due to incomplete lineage sorting or introgression. In this context, Restrictio...

متن کامل

Hot RAD: A Tool for Analysis of Next-Gen RAD Tag Data

Restriction site Associated DNA (RAD) tagging (also known as RAD-seq, etc.) is an emerging method for analyzing an organism’s genome without completely sequencing it. This can be applied to a non-model organism without a reference genome, though this creates the problem of how to begin data analysis on unmapped and unannotated reads. Our program, Hot RAD, presents a straightforward and easy-to-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 28 21  شماره 

صفحات  -

تاریخ انتشار 2012